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We study the spin Hall effect in the kagome lattice with Rashba spin-orbit coupling. The conserved spin Hall
conductance �xy

s �see text� and its two components, i.e., the conventional term �xy
s0 and the spin-torque-dipole

term �xy
s�, are numerically calculated, which show a series of plateaus as a function of the electron Fermi energy

�F. A consistent two-band analysis, as well as a Berry-phase interpretation, is also given. We show that these
plateaus are a consequence of various Fermi-surface topologies when tuning �F. In particular, we predict that
compared to the case with the Fermi surface encircling the � point in the Brillouin zone, the amplitude of the
spin Hall conductance with the Fermi surface encircling the K points is twice enhanced, which makes it highly
meaningful in the future to systematically carry out studies of the K-valley spintronics.
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Spintronics, which combines the basic quantum mechan-
ics of coherent spin dynamics and technological applications
in information processing and storage devices, has become a
very active and promising field.1–3 The key is how to control
and manipulate the spin degrees of freedom. One of the tools
is using the spin-orbit �SO� couplings, which describe the
interactions between the electron’s orbital and spin degrees
and provide the ability to manipulate the spin state via
changing some external factors, such as an external electric
field. It has been argued that the SO interaction leads to an
intrinsic spin Hall effect �SHE�,4,5 in which a spin current
flows perpendicular to an applied electric field. The initial
theoretical4–15 and experimental16–19 studies of SHE were
mainly focused on the p or n doped semiconductors �such as
GaAs�. Then, Murakami et al.20 first identified a class of
cubic materials that are usual insulators but nonetheless ex-
hibit a finite spin Hall conductance �SHC�. In those proposed
“spin Hall insulators” �SHIs� the SHC is not quantized and
depends on the system parameters. Later and even more fun-
damentally, it has been evolving into one important theme in
condensed-matter physics that the SHC can be quantized in
time-reversal invariant systems and thus can be used as an
order parameter to characterize the emergence of new topo-
logical insulating states of matter.21–35

It is clear now that besides the external SO coupling �e.g.,
the Rashba SO coupling�, the lattice structure itself also has
crucial impact on the SHE through the related band structure.
Different lattice structure may produce new features in the
spin transport, which provides versatile choices of materials
to study spin Hall transport. Motivated by this observation,
in this paper we study the intrinsic SHE of the noninteracting
electrons in a two-dimensional �2D� kagome lattice with
Rashba SO coupling. Since our attention is solely on the
SHE character brought about by the interplay between the
kagome lattice structure and the Rashba SO coupling, thus
unlike most of previous works, the kagome lattice considered
in this paper is nonmagnetic. The nonmagnetic kagome lat-
tice structure has been either fabricated by modern patterning
techniques36,37 or observed in reconstructed semiconductor
surfaces.38 In the former case, remarkably, the electron filling
factor �namely, the Fermi energy� can be readily controlled

by applying a gate voltage.39 Our lattice model is free from
the constraint imposed on the k ·p approximation used in the
extensively studied GaAs two-dimensional electron gas
�2DEG�, in which the k ·p Hamiltonian is only valid around
the � point in the Brillouin zone �BZ�. In contrast, our lattice
model allows for any electron filling, which results in vari-
ous Fermi-surface topologies, which in turn, as will be
shown below, produces profound effects on the spin Hall
transport.

To calculate the SHC and build a correspondence between
spin current and spin accumulation in the present SO-
coupled system, in which the electron spin �sz here to be
specific� is not conserved, we use a “conserved” spin current
Js,

40 which is a sum of the conventional spin current Js

� 1
2 �v ,sz� and a spin torque dipole P��rṡz. This spin current

satisfies both the spin continuity equation �tsz+� ·Js=0
�within spin-relaxation time� and Onsager relation.41 If the
spin itself is conserved �as in quantum SHIs�, Js is reduced
to Js. In general, the spin transport coefficient ���

s under new
definition is composed of two parts, i.e., the conventional
part ���

s0 and the spin torque dipole correction ���
s� . A general

Kubo formula40,42 for the spin transport coefficients is em-
ployed in this paper to calculate the SHC.

Let us consider the tight-binding model for independent
electrons on the 2D kagome lattice �Fig. 1�. The spin-
independent part of the Hamiltonian is given by

H0 = t0�
�i,j�

�ci�
† cj� + H.c.� , �1�

where tij = t0 is the hopping amplitude between the nearest-
neighbor link �i , j� and ci�

† �ci�� is the creation �annihilation�
operator of an electron with spin � �up or down� on lattice
site i. For simplicity, we choose t0=1 as the energy unit and
the distance a between the nearest sites as the length unit
throughout this paper.

Hamiltonian �1� can be diagonalized in the momentum
space as
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H0 = �
k

	k
+	H0�k� � I2
2
	k, �2�

where the 2
2 unit matrix I2
2 denotes the spin degen-
eracy in Hamiltonian H0 and 	k= �cAk↑ ,cBk↑ ,cCk↑ ,cAk↓ ,
cBk↓ ,cCk↓�T is the six-component electron field operator,
which includes the three lattice sites s �=A ,B ,C� in the
Wigner-Seitz unit cell shown in Fig. 1. Each component of
	k is the Fourier transform of ci�, i.e.,

	s��k� = �
mn

cmns�eik·rmns, �3�

where we have changed notation i→ �mns� by using �mn� to
label the kagome unit cells. H0�k� is a 3
3 spinless matrix
given by

H0�k� = � 0 2 cos�k · a1� 2 cos�k · a3�
2 cos�k · a1� 0 2 cos�k · a2�
2 cos�k · a3� 2 cos�k · a2� 0

� ,

�4�

where a1= �−1 /2,−3 /2�, a2= �1,0�, and a3= �−1 /2,3 /2�
represent the displacements in a unit cell from the A to B
site, from the B to C site, and from the C to A site, respec-
tively. In this notation, the first BZ is a hexagon with the
corners of K= � �2� /3�a1, ��2� /3�a2, and ��2� /3�a3.

The energy spectrum for spinless Hamiltonian H0�k� is
characterized by one dispersionless flat band ��1k

�0�=−2�,

which reflects the fact that the 2D kagome lattice is a line
graph of the honeycomb structure43 and two dispersive
bands, �2�3�k

�0� =14bk−3, with bk=�i=1
3 cos2�k ·ai�. These

two dispersive bands touch at the corners �K points� of the
BZ and exhibit Dirac-type energy spectra, �2�3�k

�0� = �13�k
−K��, which implies a “particle-hole” symmetry with respect
to the Fermi energy �F=1. The corresponding eigenstates of
H0�k� are given by

�unk
�0�� = Gnk�q1k,q2k,q3k�T, �5�

where the expressions of the components qik and the normal-
ized factor Gn�k� for each band are given in Table I. At two
equivalent BZ edge points M= �0, �� /3�, one can find that
the wave function �unk

�0�� is ill-defined since both its denomi-
nator and numerator are zero at these two points.

When an external Rashba SO coupling, which can be re-
alized by a perpendicular electric field or by interaction with
a substrate, is taken into account in the 2D kagome lattice
model, the spin degeneracy will be lifted. The tight-binding
expression for this external Rashba term can be given as
follows:

HSO = i
�

�
�

�ij���

ci�
† �� 
 d̂ij�zcj�, �6�

where � is the Rashba coefficient, � are the Pauli matrices,

and d̂ij is a vector along the bond the electron traverses going
from site j to i. Taking the Fourier transform 	Eq. �3�
 and
considering the 	k below Eq. �2�, we have HSO
=�k	k

+HSO�k�	k with

HSO�k� = � 0 HR�k�
HR

��k� 0
� �7�

and

HR�k� = �� 0 ei��/6� sin�k · a1� − e−i��/6� sin�k · a3�
ei��/6� sin�k · a1� 0 − i sin�k · a2�

− e−i��/6� sin�k · a3� − i sin�k · a2� 0
� . �8�

Inclusion of the Rashba SO term in the Hamiltonian makes
the analytical derivation of the eigenstates �unk� �n
=1, . . . ,6� and eigenenergies �nk very tedious. At the general
k points, these quantities can only be numerically obtained.

At some high-symmetry k points, however, they can be ap-
proximately obtained, which turns out to provide a great help
in analyzing SHC.

The energy spectrum for the total Hamiltonian H�k�

FIG. 1. �Color online� Schematic picture of the 2D kagome
lattice. The dashed lines represent the Wigner-Seitz unit cell, which
contains three independent sites �A, B, and C�.

TABLE I. The expressions for the coefficients in Eq. �5� with
xi=k ·ai.

q1k 1 / 2 	�nk
�0�2−4 cos2 x2


q2k �nk
�0� cos x1+2 cos x2 cos x3

q3k �nk
�0� cos x3+2 cos x2 cos x1

Gnk
−2 2bk�nk

�0�2+ 	4bk−3�nk
�0�2
cos2 x2+6�bk−1��nk

�0�
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=H0�k�+HSO�k� is numerically calculated and shown in Fig.
2 �solid curves� along the high-symmetry lines ��→K, K
→M, and M→�� in the BZ. The Rashba coefficient is cho-
sen to be �=0.1. Note that in this paper, our only concern is
the physically reasonable limit of �� t0 �t0 is chosen to be
unity�. For comparison we also plot in Fig. 2 �dashed curves�
the energy spectrum in the absence of the Rashba SO cou-
pling ��=0�. For the middle and upper bands, one can see
that the spin degeneracies are generally lifted in the BZ with
the exception at � and M points, at which the energy is still
spin degenerate due to time-reversal symmetry. The most
prominent splitting occurs at the corners �K points� of the
BZ. However, this splitting does not change the Dirac-type
nature of the dispersions around these corners. Also, there
still exist contacts at these corners between one middle band
and one upper band, as seen from Fig. 2. For the lowest flat
band, on the other hand, it reveals in Fig. 2 that the Rashba
splitting is negligibly small, and there is no observable SO
effect on this flat band. The two-band approximation given
below will also indicate this fact.

The conserved SHC �xy
s includes two components, �xy

s

=�xy
s0 +�xy

s�, where �xy
s0 is the conventional part and �xy

s� comes
from the spin torque dipole correction. In terms of the band
energies �nk and states �unk� of H�k�=H0�k�+HSO�k�, these
two SHC components are given by40,42

�xy
s0 = − e� �

n�n�,k

	f��nk� − f��n�k�





Im�unk�
1

2
�vx,sz��un�k��un�k�vy�unk�

��nk − �n�k�2 + �2 �9�

and

�xy
s� = − e� lim

q→0

1

qx
�

n�n�,k

	f��nk� − f��n�k+q�




Re�unk���k,q��un�k+q��un�k+q�vy�k,q��unk�

��nk − �n�k+q�2 + �2 ,

�10�

where ��k ,q�� 1
2 	��k�+��k+q�
 with ��k�= ṡz, v�k ,q� is

given in the same manner, and f��nk� is the equilibrium
Fermi function. The limit of �→0 should be taken at the last
step of the calculation. In the present six-band model the spin
operator sz should be written as I3
3 � �z in unit of � /2.

We have numerically calculated the SHC as a function of
the electron Fermi energy �F. The main results for zero tem-
perature are shown in Fig. 3, in which Fig. 3�a� plots the
conserved SHC �xy

s , while Fig. 3�b� plots its two compo-
nents, i.e., the conventional term �xy

s0 and the spin torque
dipole term �xy

s�. For comparison, the value of the Rashba SO
coefficient � used in Fig. 3 is the same as in Fig. 2 �solid
curves�. One can see that within the whole range of the elec-
tron filling �Fermi energy�, the two components �xy

s0 and �xy
s�

always oppose each other. In fact, this feature of opposite
signs of the two components �xy

s0 and �xy
s� �if both of them are

nonzero� is robust and does not depend on specific models.44

Remarkably, the amplitude of �xy
s� is twice as large as that of

�xy
s0, which results in the consequence that the total SHC �xy

s

has an overall sign change with respect to the conventional
SHC �xy

s0. As will be shown below, around the � point the
present model can be mapped into the simple Rashba 2DEG
model. Together with the previous studies of the conserved
SHC in the Rashba 2DEG,42 one can see the key role played
by the spin-torque-dipole term, which in some special cases
tends to overwhelm the conventional SHC by an opposite
contribution. On the other hand, considering the variation in
the SHC as a function of electron Fermi energy, the present
results in the 2D kagome lattice display more profound fea-
tures compared to those in the 2DEG system. In fact, it re-
veals in Fig. 3 that the conserved SHC and its two compo-
nents display four plateaus as a function �F. When the
electron filling satisfies the condition −2.0��F�0, the value
of �xy

s is e /8� while the values of �xy
s0 and �xy

s� are −e /8� and
e /4�, respectively. When the electron filling increases to sat-
isfy 0��F�1.0, then the conserved SHC jumps down to
�xy

s =−e /4� while its two components also jump to �xy
s0

=e /4� and �xy
s� =−e /2�. When the Fermi energy continues to

increase to satisfy 1.0��F�2.0, then the conserved SHC

FIG. 2. �Color online� �a� Energy spectrum of the 2D kagome
lattice with Rashba SO constant �=0.1 �solid curves�. �b� and �c�
show the Fermi surfaces in the regimes −2��F�0 and 0��F�1,
respectively. Directions of the electron’s velocity and spin polariza-
tion are also shown by red and green arrows, respectively. �d� Re-
constructed Fermi surface around the two K points by gluing the six
sheets of the Fermi surface in �c�. For comparison, the energy spec-
trum in the absence of the Rashba SO coupling is also plotted; see
the dashed curves in �a�. One can see that the lowest flat band is
immune to the Rashba SO coupling.

FIG. 3. �Color online� �a� The conserved SHC �xy
s and �b� its

two components �xy
0 �red curve� and �xy

� �blue curve� as functions of
the electron Fermi energy for the Rashba coefficient �=0.1.
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jumps up to �xy
s =e /4�, while its two components also jump

to �xy
s0 =−e /4� and �xy

s� =e /2�. Finally, when the Fermi en-
ergy satisfies the condition 2.0��F�4.0, then the conserved
SHC jumps down to �xy

s =−e /8�, while its two components
jump to �xy

s0 =e /8� and �xy
s� =−e /4�.

We turn now to understand the physics embodied in Fig.
3. Since we are dealing with the usual case of weak SO
coupling ��� t0�, thus the SHC behavior in Fig. 3 should be
mainly due to the coupling of the two Rashba SO-split bands
and can be described by an effective two-band approxima-
tion. To be more clear, let us treat the Rashba SO term as a
perturbation to the spinless Hamiltonian H0�k�. The expres-
sions for the unperturbed eigenenergies �nk

�0� �n=1,2 ,3� and
eigenstates �unk

�0�� have been given above. Then, the effective
two-band Hamiltonian originating from �nk

�0� and �unk
�0�� is ob-

tained by taking into account the Rashba SO splitting as
follows:

H̄n�k� = �nk
�0�I2
2 + � 0 �nkei�nk

�nke−i�nk 0
� , �11�

where the basis set to expand H̄n�k� consists of �unk
�0�� � �↑ �

and �unk
�0�� � �↓ �. Here the coefficients �nk and �nk are defined

by

�nk cos �nk = −
3�

2
Gn

2�k���nk
�0� + 2�


��nk
�0�2 − 4 cos2 kx�cos kx sin�3ky� ,

�nk sin �nk = −
�

2
Gn

2�k���nk
�0� + 2�sin kx


	4�nk
�0� cos kx + ��nk

�0�2 + 4 cos2 kx�cos�3ky�
 .

�12�

The eigenenergies of H̄n�k� are

�nk
��� = �nk

�0� � �nk. �13�

The corresponding eigenstates are given by

�unk
���� =

1
2

��ei�nk,1�T. �14�

As a result, the total Hamiltonian can now be approximated
by

H̄�k� = �n=1
3 H̄n�k� . �15�

This two-band approximation proves to work very well in
the weak Rashba SO coupling limit. In particular, one can
see that the lowest flat band ��1k

�0�=−2� is not split by the
Rashba SO coupling in the first order in � since the quantity
�1kei�1k is zero, and as a result, the off-diagonal element in
Eq. �11� �n=1� vanishes. This perturbative analysis agrees
well with the exact numerical result in Fig. 2, which shows
that the original flat band �1k

�0� keeps nearly dispersionless
upon weak Rashba SO interaction. As a result, the contribu-
tion of these two spin almost-degenerate flat bands to the
SHC should be negligibly small, which has been verified by
our numerical test.

Thus, the finite SHC in Fig. 3 is ascribed to the contribu-
tions from the two �SO-split� middle or the two upper bands,
depending on the position of the Fermi energy. Remarkably,
there is a particle-hole symmetry between the middle and
upper bands with respect to their contact energy plane. As a
consequence, the SHC is antisymmetric with respect to the
Fermi energy �F=1.0, as revealed in Fig. 3. Keeping this fact
in mind, our remaining discussion of Fig. 3 will focus on the
two SHC plateaus and the transition between them when
scanning �F through the middle bands. According to Eqs. �9�
and �10� and our two-band approximation 	Eq. �11�
, when
the Fermi energy crosses the two middle bands �2k

���, it can be
shown that the conventional part �xy

s0 and the spin-torque-
dipole part �xy

s� of the conserved SHC are given by

�xy
s0 =

e

4�
k

f2k
�−� − f2k

�+�

�2k

��2k
�0�

�kx

��2k

�ky
�16�

and

�xy
s� =

e

4�
k

f2k
�−� − f2k

�+�

�2k
� ��

�kx

��2k
�0�

�ky
− 2

��2k

�ky

��2k
�0�

�kx
�

−
e

4�
k
� � f2k

�−�

�kx
+

� f2k
�+�

�kx
� ��2k

�ky
, �17�

where f2k
��� are the Fermi distribution functions for the middle

bands �2k
���.

According to Kubo formulas �16� and �17�, now let us see
the first SHC plateau in Fig. 3 for −2.0��F�0. Since this
plateau occurs upon occupation of the bottom �at the �
point� of the middle bands, thus we can simplify the discus-
sion of the first SHC plateau by expanding the middle-band

Hamiltonian H̄2�k� around the � point up to the first order in
the Rashba coefficient �,

H̄2
� = − 2.0 + k2 + ��ky�x − kx�y� . �18�

Not surprisingly, effective Rashba Hamiltonian �18� around
the � point in the present kagome lattice is similar to that in
the semiconductor 2DEG. Thus, as has been done in the
2DEG system,42 a straightforward analytical calculation in
terms of Eqs. �16�–�18� gives the zero-temperature SHC as
�xy

s0 =−e /8�, �xy
s� =e /4�, and subsequently �xy

s =e /8�. This
analytical result is consistent with the numerical result in
Fig. 3 for the first SHC plateau. Actually, the first SHC pla-
teau in Fig. 3 goes beyond this analytical treatment around
the � point and persists with increasing the Fermi energy up
to �F=0. The reason is attributed to the equivalent Fermi-
surface topologies when changing �F within the interval
	−2.0,0
. In fact, when �F lie in the region 	−2.0,0
, the
corresponding 2D Fermi surface consists of two simple
closed loops circling around the � point, as illustrated in Fig.
2�b�. Here, from Fig. 2�a� one can see that the critical value
�F=0 corresponds to the case that the Fermi surface nested in
the middle bands touches the BZ edge at the M point, at
which the energies of the two middle bands are degenerate
due to the time-reversal symmetry.

When the Fermi level goes over this critical value, i.e.,
�F�0, then the Fermi surface abruptly changes its topology.
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Instead of simple closed loops, the Fermi surface for 0��F
�1.0 is characterized by six pieces of disconnected seg-
ments around six corners �K points� of the BZ as shown in
Fig. 2�c�. After gluing these segments together by a simple
translation operation in the extended BZ, which does not
change the property of electron states, then one can get two
sets of closed loops around two K points as shown in Fig.
2�d�. Thus the number of Fermi loops is doubled in the case
of 0��F�1.0 compared to the case of −2.0��F�0. This
fundamental change in the Fermi-surface topology by in-
creasing the electron filling, together with the combined fact
that �i� the contributions from these two sets of K-centered
Fermi loops are equivalent and �ii� the normal direction of
the Fermi surface for 0��F�1.0 is opposite to that for
−2.0��F�0, results in a downward jump of SHC plateaus
from �xy

s =e /8� to �xy
s =−e /4� at the critical value of �F

=0. To be more clear and to verify this argument based on
the Fermi-surface topology, near each corner of the BZ let us

expand the middle-band Hamiltonian H̄2�k� up to the first
order in the Rashba coefficient �,

H̄2
K = 1 − 3k − �

3

2k
�ky�x − kx�y� , �19�

where the wave vector K is coordinated with respect to the
K point. By substitution of the eigenenergies and eigenstates

of H̄2
K into Eqs. �16� and �17� and taking into account the six

corners of the BZ, it is straightforward to obtain the zero-
temperature SHC as �xy

s0 =e /4�, �xy
s� =−e /2�, and �xy

s =−e /
4�, which is consistent with the numerical result in Fig. 3.

Therefore, it becomes clear now that the different SHC
plateaus in Fig. 3 are due to the different Fermi-surface to-
pologies when varying �F. This observation makes it highly
interesting to reinterpret the metallic SHE, similar to what
has been done in discussing the metallic anomalous Hall
effect �AHE�,45–48 in terms of Berry phases accumulated by
adiabatic motion of electrons on the Fermi surface. The pre-
vious works have shown the relationship between the SHC
and the Berry phase in the Rashba 2DEG.6,49 The Fermi
surface involved in those discussions is as simple as shown
in Fig. 2�b�. Compared to the Rashba 2DEG, one can see
from the above discussions that the present kagome lattice
provides more profound Fermi-surface topologies in the dif-
ferent regions of the electron filling. On one hand, in the
regime −2.0��F�0 effective “�-valley” Hamiltonian �18�
and the Fermi surface of the kagome lattice are identical to
those of the Rashba 2DEG. As a result, the two kinds of
systems have the same Berry-phase SHC in this regime. On
the other hand, in the regime 0��F�1.0 effective
“K-valley” Hamiltonian �19� of the kagome lattice, which is
absent in the Rashba 2DEG, has a remarkable Dirac-type
spectrum with linear dependence of the energy on the elec-
tron momentum. Exploring the K-valley spintronics associ-
ated with Berry phases is the task of our following discus-
sions.

The Berry phases of Bloch states �unk
���� for closed paths

Cn
��� in the k space are written as

�n
��� = �

Cn
���

Ank
��� · dk , �20�

where Cn
��� are the Fermi loops identified by the zero-

temperature Fermi distribution function ���F−�nk
���� and

Ank
��� = �unk

�����− i
�

�k
��unk

���� �21�

are the Berry connections. The corresponding Berry curva-
tures are defined as �nk

���=�k
Ank
���. By substituting Eq.

�21� into Eq. �9� and noting that �xy
s0 =−�yx

s0, we have

�xy
s0 = −

e�

2 �
�=+,−

�
k

fnk
���

�nk
��� − �nk

�−�� 	vnk
�0� 
 Ank

���
z, �22�

where vnk
�0�= 1

�

��nk
�0�

�k is the band velocity in the absence of the
Rashba SO coupling. Now we focus our attention to the re-
gime 0��F�1.0, within which the gluing Fermi surface
consists of two sets of loops around two K points as shown
in Fig. 2�d�. According to K-valley Hamiltonian �19� and
its eigenenergies �2k

���=1−3k�3� /2 and eigenstates
�u2k

����= 1
2

�ie−i�2k ,1�T with �2k=tan−1�ky /kx�, it is straight-
forward to obtain the zero-temperature conventional SHC as

�xy
s0 = 2

e

8�2�
�

�=+,−
��

S2
���

d2k�k

k

 A2k�

z
, �23�

where S2
��� ��= + ,−� in Eq. �23� denotes the integral area

bounded by the Fermi loops C2
��� 	see Fig. 2�d�
, and the

Berry connections

A2k
��� = −

1

2

��2k

�k
=

1

2
� ky

k2 ,−
kx

k2� � A2k �24�

are equivalent for the two middle bands. Note that the factor
2 in Eq. �23� is due to the contributions from the two K
valleys. Clearly, if we define an Abelian spin gauge field
B2k= �0,0 ,B�, with B= 	 k

k 
A2k
z, then Eq. �23� denotes a
spin-flux difference through two areas S2

�+� and S2
�−�. In virtue

of this way, we define a spin gauge potential A2k to satisfy
�k
A2k=B2k, then expression �23� for the conventional
SHC is rewritten as

�xy
s0 =

e

4�2�
�

�=+,−
��

S2
���

B2k · dS

=
e

4�2�
�

�=+,−
��

S2
���

�k 
 A2k · dS

=
e

4�2�
�

�=+,−
��

C2
���

A2k · dk . �25�

We choose a symmetric form for the spin gauge potential
A2k,

A2k =
1

2
� ky

k
,−

kx

k
� = kA2k, �26�

which obviously satisfies �k
A2k=B2k. By substitution of
Eq. �26� into Eq. �25�, we have
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�xy
s0 =

e

4�2�
�

�=+,−
��

C2
���

kA2k · dk =
e

4�2 �
�=+,−

�kF
���

kF
�+� − kF

�−��2
���,

�27�

where kF
��� are the Fermi wave vectors for the two middle

bands �2k
���=1−3k�3� /2, and we have used the fact that

kF
+ −kF

− =�. Thus, we get a remarkable relationship between
the conventional SHC and Berry phases for the K-valley
Hamiltonian. Using the chosen middle-band eigenstates
given above Eq. �23�, it is simple to obtain the Berry phases
as �2

�+�=�2
�−�=�, leading Eq. �27� to �xy

s0 = e
4� , consistent again

with the numerical result in Fig. 3�b�.
In summary, we have theoretically investigated the metal-

lic spin Hall effect in the 2D kagome lattice with Rashba SO
coupling. When varying the Fermi energy �F, we have found
that the conserved SHC �xy

s and its two components, i.e., the
conventional term �xy

s0 and the spin-torque-dipole term �xy
s�,

are characterized by a series of plateaus, which is absent in
the simple 2DEG system. In the whole range �F varies, the
two terms �xy

s0 and ���
s� have opposite contributions. The mag-

nitude of ���
s� is twice that of ���

s0 . It has been shown that
these SHC plateaus in the different regions of �F are closely

associated with the topologically different Fermi surfaces
surrounding the high-symmetry BZ points, i.e., the � and K
points. Thus, as has been revealed in this paper, a relation-
ship between these SHC plateaus and Berry phases accumu-
lated by adiabatic motion of quasiparticles on the Fermi sur-
faces can be built up, which is similar to the metallic AHE.
In particular, we have shown that compared to the case with
the Fermi surface encircling the � point, the amplitude of the
SHC with the Fermi surface encircling the K points is twice
as large. Considering the combined fact that �i� the 2D
kagome lattice is the line graph of the honeycomb structure,
�ii� the Rashba SO coupling and the Fermi surface surround-
ing the K points can be easily realized in the graphene with
honeycomb structure, and �iii� the similar Berry-phase AHE
has been recently observed, we expect that the present pre-
diction of the K valley enhanced SHE can be observed in the
graphene system.
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